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Abstract

Many of the methods of nonparametric density and hazard rate
estimation from right-censored observations are discussed. These
include histogram and kernel-type procedures, likelihood methods,
Fourier series methods, and Bayesian nonparametric approaches.

Examples of kernel density estimates are given for mechanical switch

life data where data-based choices ¢f the bandwidth values are used.
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1. Introduction

A common and very old problem in statistics is the estimation of an uuknown

probability density function. In particular, the problem of nonparametric

. probability density estimation has been studied for many years. Summaries of
results on nonparametric density estimation based on complete (uncensored)

random samples have been listed recently by several authors, including Fryer [18], )

Tapia and Thompson [52], Wertz and Schneider [60], and Bean and Tsokos |2].

Also, a review of results for censored samples has been given by Padgett and
McNichols [39]. 1In addition to its importance in theoretical statistics, non-
parametric density estimation has been utilized in hazard analysis, life testing,

and reliability, as well as in the areas of nonparametric discrimination and

high energy physics [20]
The purpose of this article is to present the different types of ﬁonparametric
density estimates that have been proposed for the situation that the sample data

are censored or incomplete. This type of data arises in many life testing”

situvations and is common in survival analysis problens,(see Lagakos [25] and

— % . 1673
Kalbfleisch and Prentice [21], for example). In many of these situations, gome

observations may be censored or truncated from the right, referred to as right-
censorship., This occurs often in medical trials when the patients may enter
treatment at different times and then either die from the disease under investi-
‘gation or leave the study before its conclusion. A similar situation may occur
in industrial life testing when items are removed from the test at random times
for various‘reasons. It is of interest to be able to estimate nonparametrically
the unknown density of the lifetime random variable from this type of data with-

out ignoring or discarding the right-censored information. The development of
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such nonparametric density estimators has only occurred in the past six or
seven years and the avenues of investigation have been similar to those for

the complete sample case, except that the problems are generally more difficult

mathematically,

The various types of estimators from right-censored samples that have
been proposed in the literature will be indicated and briefly discussed here.
They include histogram-type estimators, kernel-type estimators, maximum like-
lihood estimators, Fourier series estimators, and Bayesian estimators. In
addition, since the hazard rate function estimaéion problem is closely related

to the density estimation problem, various types of nonparametric hazard rate

2T SIS AR NCONE FWERCURLEY. WS T PR

estimators from right-censored data will be briefly mentioned. Due to their
computational simplicity and other properties, the kernel-type density estima-
tors will be emphasized, and some examples will be given in Sectiomn 7.

Before beginning the discussion of the various estimators, in the next

et S Kol

section the required definitions and notation will be presented.

2. Notation and Preliminaries

Let xi.x;.....xs denote the true survival times of n items or indi-
viduals which are censored on the right by a sequence ul,Uz,...,Un which in

general may be either constants or random variables. It is assumed that the

X:'s are nonnegative independent identically distributed random variables

with common unknown distribution function F°, For the problem of density

T L0V, VT

estimation, it is assumed that F° 1s absolutely continuous with density £°.

The corresponding hazard rate function is defined by = fol(l-Fo).

The observed right-censored data are denoted by the pairs (xi,Ai).

-l v, ¥ 8 VN

i{=l,...,n, where




i
o
0 if Xi > Ui

(o]
X, = min{xi,ui}. A

o
. 1 if Xi svU
i i

N

Thus, it is known which observations are times of failure or death and which
ones are censored or loss times. The nature of the censoring mechanism depends
on the Ui‘s: (1) 1f Ul....,Un are fixed constants, the observations gre
time-truncated. If all Ui's are equal to the same constant, then the case

PRSI TR ST SR

of Type I censoring results. (ii) If all ’U1 = X?r) » the rth order

statistic of x°....,x§, then the situation is that of Type II censoring.

(141) 1f Ul.....Un constitute a random sample from a distribution H (which

is usually unknown) and are independent of X:,....X:, then (xi'Ai)’

i=1,2,...,n, is called a randomly right-censored sample. i

The random censorship model (iii) is attractive because of its mathematical g
convenience. Many of the estimators discussed later are based on this model.
Assuming (1ii), Al,....An are independent Bermoulli random variables and the i

distribution function F of each xi. i=1l,...,n, 15 given by 1-F = (l-Fo)(l-H).

Under the Koziol and Green [24] model of random censorship, which is the propor-

tional hazards assumption of Cox [7], it is assumed that there is a positive

constant B such that 1l-H = (l-Fo)B. Then by a result of Chen, Hollander, and

Langberg [6], the pairs (x:.ui). i=1,...,n, follow the proportional hazards

model if and only if (xl,....xn) and (Al""'An) are independent. This

Koziol-Green model of random censorship arises in several situations (Efron [11],

Csorgd” and Horvith [8], Chen, Hollander and Langberg [6]). Note that B is a

censoring coefficient since a = P(x: < Ui) = (1-&8)’1, which is the probability

of an uncensored observation.

Based on the censored sample (xi’Ai)’ i=1,...,n, a popular estimator of

the survival probability S°(t) = 1-FO(t) at t 2 0 1s the product-limit
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estimator, proposed by Kaplan and Meier [22] as the "monparametric maximum
likelihood estimator" of S°. This estimator was shown to be “self-consisient™
by Efron [11]). Let (Zi,Ai), i=1,...,n, denote the ordered xi's along with
their corresponding Ai's. A value of the censored sample will be denoted by

the corresponding lower case letters (xi.Gi) or (zi, 6;) for the unordered

or ordered sample, respectively. The product-limit estimator of S° 15 defined

by [11]
1, 0stsgz
. k-1 A
P (t) = e TR R ] 1, k=2 n
n = T O k-105)s ¥ 2ee00me
0, £>2z.

Denote the product-limit estimator of Fo(t) by Fn(t) = 1-Pn(t), and Jlet

s, denote the jump of Pn (or Fh) at Z,, that is,

3 3
1-p (zz), 3=1

oy = { P2 - P20 1°2,ee0n0d (2.3)
P(2), 3=n.

Note that sj =0 if and only if A; =0, j <n, that is, if zj is a censored
observation,

The product-limit estimator has played a central role in the analysis of
censored survival data (Miller [36]), and its properties have been studied
extensively by many authors, for example, Breslow and Crowley [4], Foldes,
Rejtd and Winter [15], and Wellner [59]. !Many of the nonparametric density

estimators from right-censored data are naturally based on the product-limit

estimator, beginning with the histogram-type and kernel-type estimators.
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3. Histogram and Rernel Estimators

One of the simplest nonparametric estimators of the density function
for randomly right-censored samples is the histogram estimator. Although
they are simple to compute, histogram estimators are not smooth and are
generally not suited to sophisticated inference procedures.

Estimation of the density function and hazard rate of survival time
based on randomly right-censored data was apparently first studied by Gehan
[19]. The life table estimate of the survival function was used to estimate
the density £° as follows: The observations (xi,éi), i=1,...,n, were
grouped into k fixed intervals [tl,tz), [tz,t3)....[tk,°), with the finite

widths denoted by hi =t -t i=1,...,k-1., Letting n denote the number

i

3° Li be the number of individuals censored

(lost or withdrawn from the study) in the interval [t

i+l
of individuals alive at time t

i’tt+1)’ and d1 be the

number of individuals dying or failing in the ith interval (where time to death

A
or failure is recorded from time of entry into the study), define q = di/ni

-~ ~ A

= - = ' - o
and pi 1 9y where By =0y Li/2. Therefore, 9 is an estimate of
the probability of dying or failing in the ith interval, given exposure to risk

~ "

= - . .
in the ith interval. Let Hi Pi1 “1-1' where II1 = 1. Gehan's estimate of

£° at the midpoint ¢t of the ith interval is then

mi
~ n- n q

e o N A | . _
f(tmi) = hi hi 'Y i lgooogk 10

An expression for estimating the large sample approximation to the variance of
f(tmi) was also given in [19].
Using the product-limit estimator Fh of Fo, Foldes, Rejto, and Winter [16]

defined a histogram estimator of £ ona specified interval (0,T), T > O.
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For integer n > 0, let 0 = tén) < tfn) <€ tsn)- T be a partition of
n
[0,T) inte n subintervals Iin), where
£, e, 1s1<y
If") -
(n) -
[tvn_l 'T] » i Vn.
Then their histogram estimator is
= ¢, (0) P ¢))
- F (7)) ~F (t,;7)
i n' i-1 (n)
£(x) = I xe1:” . (3.1)
) _ (0) ' i
i i-1

If x £ [0,T], ;(x) is either undefined or defined arbitrarily. Notice that
if pone of the observations are censored, ;n reduces to the empirical distri-
bution function, and (3.1) becomes the usual histogram estimator with respect
to the given partition. The strong uniform consistency of ; on [0,T) was
proven by Foldes, Rejtd, and Winter [16] under some conditions on the partition,
provided that f£° was continuous on [0,T] and H(T ) < 1, where H(T )
denotes the limit from the left of H at T. This last condition is common in
obtaining consistency properties under random right-censorship and insures that
uncensored observations can be obtained from the entire interval of interest.
Burke and Horvath [5] defined general densiry estimators which included
histogram-type and kernel-type estimators with appropriate choices of the de-
fining functions. They also obtained asymptotic distribution results for these
estimators. In fact, their results were obtained for the more general

situation of the k independent competing risks model. When k=2, this reduces

to the random right-censorship model.

...........
e N

----------
.......
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The histogram estimator can be obtained as a special case of the kernel

density estimators. The kernel-type estimators have been perhaps the most

popular estimators in practice due to their relative computational simplicity, ﬁ
smoothness, and other properties. Kernel-type estimators from randomly right- ]
censored data have been studied only since around 1978, beginning with the work a
of Blum and Susarla [3]}. The investigation of kernel estimators for right-
censored samples has been attempted along the same lines as for the complete

sample case. However, due to mathematical difficulties introduced by the cen-

NI i .

soring, some of the analogous theory to the complete sample case has not yet

been obtained.

P YA,

Blum and Susarla [3] generalized the complete sample results of Rosenblatt

. 4

[45] concerning maximum deviation of density estimates by the kernel method.

To define the Blum-Susarla density estimator, let {hn} be a positive sequence,

called the bandwidth sequence, such that lim hn = (0, and let N+(x) denote
n-+x

the number of observed xi's that are greater than x. Define

n 1+N (X,) {A, =0, X, sx])
H(x)'n{——J— 3 3

i=1 2+N (X,)

- 3 :
5 |
- where [A] denotes the indicator function of the event A. By a modification {
k. * ‘
A of the product-limit estimator, it can be shown that Bn is a good estimate !
& o K

of H = 1-H., For a kernel function K satisfying certain conditions, the y

Ny
-. »

Blum-Susarla density estimator is given by

LYY

x=-X
f:(x) - [nhnn:(x))‘l le x(—-h—l) (8, =11. (3.2)

LR D di s §
ST T T

For example, K can be a bounded density function with support in the interval

Y T

[-A,A] for some A > 0 and absolutely continuous on [-A,A] with derivative

ORI
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K' which is square 1ntegrab1e on [~A,A). By following standard arguments,

(ah )7 2 K((x-xj)/h ) [8,=1] and n (x) can be shown to be
i=1
good estimators of f (x)H*(x) and H (x), respectively.

(£°8")_(x)

This motivates the use of (3.1) as an estimator of fo(x).

Blum and Susarla also obtain limit theorems for the maximum over &
finite interval of a normalized deviation of the density estimator (3.2).

These results are useful for goodness-of-fit tests and tests of hypothescs ahout

the unknown lifetime density £°,

It was conjectured by Blum and Susarla [3] that the kernel-type estimator

£.00 = bt [T R((x-0)/h )4 EL(E)

3

* *
behaved in the same way as fn’ where Fn was an estimator of F° such as the

product-limit estimator. In fact, Foldes, Rejto, and Winter [16] proved

o *
uniform almost sure convergence of fn to £ when F was taken to be F )

Specifically, one of their results was that sup If (x) - £ (x)I + 0 almost
a<x<b
surely as n + @ provided £° was bounded and had a bounded derivative on

(a,b), - ® s a<bs» K was right-continuous and of bounded variation,
hn(nllog n)ll8 -+ ®  and B(T;o) < 1, where Tpo = sup{x: Fo(x) < 1}. Again,
the last condition insured that observed lifetimes in the entire support of F¢

would be available. It should be noted that if no censoring is present, then
~ -1 -~
£ (x) = h" [~ R((x-t)/h )d F_(t) (3.3)

reduces to the Parzen [43) estimator.

McNichols and Padgett [32] wrote (3.3) in the form

j)/hn], (3.4)

FN -1 n
fn(x) - hn 21 sj K[(x~2

R A TR St S S 1 -t R IR T SR . Tt e e St
T I R I NS S ety
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where 8, 1is given by (2.1). They considered the mean, variance, and nean

b

squared error of (3.4) under the Koziol-Green model of random censorship des-

-
%
Y
"y
v

cribed in Section 2. This model allowed the expected value of fn(x) to be
evaluated by using the independence of (xl.....xn) and (Al""’An)' In
particular, if K 4s a Borel function such that tup[K(t)I < ®,

2. IR(t)|de <=, 1m JtR(e)|= 0, and [~ K(t)dt = 1, then
to

E[f_(x)] = a h;l [5 8, (D E(OR((x=t) /h )dt

+ (l-a)pn(a)h;l EIK((x-2_/h )], (3.5)
-1 n=-1
where a = (148) ", b = l-a, pn(a) = I [(n-i+b)/(n-i+1)],
i=1
?  n-l+b n-j 3-1
g,(0) = I 7)) RO (R ™,

=1

(“:b) = (o+b) (n#b-1) ... (n+b-k+1)/k! ,

F=1-=- (1—H)(1-F°), and f 1is a density for F. Furthermore, it was shown

that 1if hn + 0, then 1lim E[f“(x)] = fo(x), x > 0. Thus, under the Koziol-

n-*o

Green model, fn(x) is asymptotically unbiased for fo(x) similar to the

- P s .t _a

.

F complete sample case (the conditions on K and hn are those imposed by Parzen

é [43]). Second moment convergence was also obtained under the conditions that

Fﬂ n hn + and b = P(a censored cbservation) < 1 1in addition to the conditions ‘
%& required for asymptotic unbiasedness above [32]. :
3 For the kernel estimator (3.4), it is desirable to allow the data to play

Eg a role in how much smoothing is done. Since, for a fixed n, hn is the

Ei "smoothing constant,” it would be reasonable to allow h ~to be a function of

E: the right-censored sample. McNichols and Padgett [35] consider this type of

4

X

]
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modification, which extends the work of Wagner [54] to censored data. This

modified kernel estimator is

-1 B
£x) =T " ] s, K[(x-2

A )/Tn]. (3.6)

3

where rn rn(xl.....xn) is some function of the censored data. For this
estimator it was shown that if B(T;o) <1, K has bounded variation,

Il?m xK(x) = 0, Fn + 0 in probability (almost surely), and
X | ¥

n%(log log u).As Tn + o in probability (almost surely), then fn(x) -+ fo(x)
in probability (almost surely) at each x for which £° is continuous.

One choice of rn satisfying the above conditions is as follows:

1f Yn = [nal, X <a <1, where [°] denotes the greatest integer function,
let D n be the distance from Z

3 J

1 <3 <n, and select Pn to be Pjn with

to its Y,-nearest neighbor among

zl....,zj_l.zj+1,...,zn,
probability sj.
The practical choice of the bandwidth hn for a given censored sample is
a problem which must be addressed in order to calculate the kernel estimator.
For complete samples, several "data-based" procedures for selecting a "good"
value of hn for a given set of data have been proposed (see Scott and Factor
[46], for example). Among these procedures when samples are right-censored,
the maximum likelihood approach seems to be feasible. This will be discussed

further in Section 6.

With the exception of the expressions for the mean, E[fn(x)]. in (3.5)

and for B[f:(x)] under the Koziol-Green model [32], very little has been

P..i "

- - done concerning the small-sample properties of fn or any of the other kermel-
h,

Cf- type density estimators in the censored data case, Padgett and McNichols [40]
[

:

vy
e




have performed Monte Carlo simulations for several parametric families of
lifetiwe distributions, uniform and exponential censoring distributions,
several kernel functions, and several bandwidths to determine the small-sample
behavior of ;n with respect to bias and mean squared error.

For estimating the hazard rate function r° from randomly right-censored
data, Foldes, Rejto, and Winter [16] considered estimators of the form

"
r = —1& a0,

2 1
l—l-‘n(x) +;

where £ denoted either their histogram estimator (3.1) or their kernel-type
estimator (3.3). The 1/n 1in the denominator simply prevents dividing by zero.
Strong consistency results for T similar to those for (3.1) and (3.3) were

proven.

McNichols and Padgett [34] considered the kermel-type estimator of °

given by
r (x) = h-l'[K((x-t)/h )[1-; (t)]-1 d; (v),
n n n n n
x 2 0 such that F(x) <1,

under the Koziol-Green model of random censorship. Expressions for E[tn(x)]
and var[rn(x)] were obtained, and it was shown that rn(x) was asymptotically

unbiased, and converged in mean square and in probability to ro(x). extending

Watson and Leadbetter's [55,56] results.

Tanner and Wong [50] also studied a kernmel-type estimator of r° based

on the ordered censored sample (Zi,Ai). i=1,...,n, given by
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PN n -1
r(x) = (n-j+1) ~ A! (x-2,),
&L 3 % 7%

x 2 0 such that F(x) <1,

where K was a symmetric integrable kernel with Kh(y) = K(y/h). They derived
expressions for El;(x)] and var[:(x)] and proved under the conditions on K
stated by Watson and Leadbetter [55,56] that r(x) was asymptotically unbiased

if hn + 0 and nhn + o, The conditions assumed here were essentially the same
as those required by McNichols and Padgett [34], except for the proportional
hazards (Koziol-Green) model assumption which gave somewhat different expressions
for the mean and variance. The asymptotic variance was also obtained, and Hajek's
projection method was used to establish asymptotic normality under conditions

on K, Fo, H, and hn. Tanner and Wong [51] studied a class of estimators of

the same general form as ;(x) with Kh replaced by Ke, vhere 6 was a
positive-valued '"smoothing vector" chosen to maximize ;-likelihood function.
Hence, for this estimator the smoothing parameters were chosen based on the ob-
served data.

Tanner [49] considered a modified kernel-type estimator of ° in the form

n A}
Fe - et ] iy Keezpem,
i=1

where Rk was the distance from x to the kth nearest of the uncensored
observations among xl,...,xn. This estimator allowed the data to play a role
in determining the degree of smoothing that would occur in the estimate.
Assuming that s® and £° were continuous in a neighborhood about

x,k = [ncl, % <a <1, where [*] was the greatest integer function, that K

had bounded variation and compact support on the interval [-1,1], and that
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r was continuous at x, it was shown that rn(x) was strongly consistent.

Blum and Susarla [3] considered the estimator (in the notation of Equation

(3.2))
. (£°u")_(x)
fn(x)"'_*n—o x20,
Sn(x)

*
where sn(x) = (number of 2Z,'s > x)/n. This estimator was also of the kernel

3
type, and limiting results similar to those stated for the density estimator

(3.2) were obtained for T..
Ramlau-Hansen [44] used martingale techniques to treat the general multi-
plicative intensity model. His results are very general and include the kernel

estimators of hazard rate functions of Foldes, Rejto, and Winter [16] and

Yandell [61]}. The martingale techniques yielded local asymptotic properties of

many of the hazard rate estimators in a simpler manner than classical procedures.

Finally, in a recent paper Liu and Van Ryzim [26] obtained a histogram
estimator of the hazard rate function from randomly right-censored data based
on spacings in the order statistics. They showed the estimator to be uniformly
consistent in a bounded interval and asymptotically mormal under suitable
conditions. An efficiency comparison of their estimator with the kernel esti-
mator of hazard rate was also given. Also, Liu and Van Ryzin [27] gave the
large sample theory for the normalized maximal deviation of a hazard rate esti-
mator under random censoring which was based on a histogram estimate of the

subsurvival density of the uncensored observations.

4, Likelihood Methods

One approach to estimating a density function nonparametrically is that

of maximum likelihood. Nonparametric maximum likelihood estimates of a

L . ememmms s 2 e e -
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probability density function do not exist in general. That is, the likelihood

function for a complete sample is unbounded over the class of all possible

‘a L SEEas » @

densities. However, by suitably restricting the class of densities, a nonpara-
metric maximum likelihood estimator (MLE) may be found within the restricted

class. For complete samples, the maximum likelihood estimator of a density g

- G S . w

e ..

was given by Barlow, Bartholowew, Bremner and Brunk [1) if g was assumed to
be either decreasing (nonincreasing) or unimodal with known mode. Wegman
[57,58] assumed unimodality with unknown mode and found the MLE of the density

and studied its properties for complete samples.

McNichols and Padgett [33] studied maximum likelihood estimation of

al '’

decreasing or unimodal densities based on arbitrarily right-censored data.

Gl

The censoring variables Ul,...,Un could be either constants or continuous

random variables. They first assumed that £° was decreasing (nonincreasing)

on ([0,») and let FD be the set of distributions with decreasing left-

continuous densities on [0,*). For the ordered censored observations
(21,65). i=1,...,n, the likelihood function was written as

o n o 6 o 1-6£
L) = T (2 1 %))
i=]

where So = 1-F°. It was shown that a maximum likelihood estimator of £°

must be a step function.

The estimator was found by maximizing the likelihood function L(fo) over

FD subject to the decreasing density constraint. Equivalently, the constrained

optimization problem to be solved was é

n 1
maximize Z {61 log Y4 + (1-61)10g[1- {

y,(z, -2, )]}
yl.....yn i=1 j=1 3T 3-1

‘xtl‘t;-_: [
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subject to (1) Y, 2y, 2...2 Yy 20

n
(i1) y, (2, ~2,,) 1,

where z £ 0. This function to be maximized was shown to be concave and the
* &
problem was shown to have a unique solution, say Yyoeoes¥pe Then any density
of the form
0, x<0
* *
f (x) = yj, zj-l < xS zj, j=1,...,n+l

0, x > z.41

*
was a maximum likelihood estimator of f°. where Yp41® SOME value less than

*
or equal to Yo» and zn+1(> zn) were chosen so that

n . *
1- 321 Y5(25 = 24 1) % Y1 (Bpyy ~ %)

Similarly, f° was estimated by maximum likelihood assuming that £° was
increasing (nondecreasing) on [0,M], M > 0 known. Then, if M denoted the
known mode of the unknown unimodal density, the two maximum likelihood estimators
on [0,M] and on (M,») found as above could be combined to estimate the uni-
modal density. If £f° was assumed to be unimodal with unknown mode M, then
McNichols and Padgett [33]) applied the above procedure for known mode, assuming
zj_1 <M< zj for each j=1,...,n, obtaining n solut;ons for £°. These n
solutions gave n corresponding values of the likelihood function. The maximum

likelihood estimator of f° was then taken to be the solution with the largest

of the n 1likelihood values, analogous to Wegman's [57,58] procedure for complete

samples,
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Another approach to the problem of nonparametric maximum likelihood
estimation of a density from complete samples was proposed by Good and Gaskins
{20]. This method allowed any smooth integrable function on the interval of
interest (a,b) (which may be finite or infinite) as a possible estimator, but
added a "penalty function" to the likelihood. The penalty function penalized

a density for its lack of smoothness, so that a very "rough" density would have

a smaller likelihood than a "smooth" density, and hence, would not be admissible.

De Montricher, Tapia, and Thompson [9] proved the existence and uniqueness of
the maximum penalized likelihood estimator (MPLE) for complete samples.

Lubecke and Padgett [30] assumed that the sample was arbitrarily right-censored,
(Xi.bi).itl,....n, and showed the existence and uniqueness of a solution to

the problem:

maximize L(g) subject to
g(t) 20 forall t e 8, j‘2 g(t)de = 1, (4.1)

and g ¢ H(R),

n (4 1-§
where L(g) = Il [g(xi)] 1[l-G(xil_] i exp[-¢(g)], N 1is a finite or infinite
i=1
interval, H(f}) 4is a manifold, and G is the distribution function for density
3

g. In particular, letting u = g° and using Good and Gaskins' [20] first

penalty function, the problem (4.1) becomes:

PN n 61 xi 2
maximize L(u) = I [u(xi)] ll-f_a u“(t)dt])
i=1

x exp[-2a f: (u'(t))zdt]. (4.2)

5(1-6 )

where xi >0, 1=1,...,n, fg uz(t)dt =1, and u(t) 20, t > 0.

Let X_go~ % and 6__1 = 61. i=1,...,n, and define u(x) = u(|x]) for

- .
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x ¢ R\{0} and u(0) = 1im_u(x). Then define the following problem:
x*0
- n 8 x, }5(1-6.)
maximize L(3) = I ? Bex)) t -/ 2 ey ?
ij=1 :

x expl-2a [0, (a'(e))%ael, (4.3)

where f:; Gz(t)dt -2, uc€ By = {g e ul(_,.,)= g(x) = g(-x)},
and Bl(-w.w) is the Sobolev space of real-valued functions
such that the function and its first derivative are square

integrable,

* ® *
If u solves (4.3), then it can be shown that u+(t) =qu (t), t 20,
"
and u+(t) = 0, t <0, solves (4.2). Lubecke and Padgett [30] showed that a
-
solution to (4.3) was a function u which solves the linear integral equation

-5)
u = C(t; e 3%
Uy (8) = C(t5 x,0,)) + (8a)) Is [Ii o TG I ==,xi](h|)}

x sinh [(M20)%(t-1)] 5, (mar, (4.4)

where the forcing function is defined by

L n 61(2axy“5 .
C(t; x,0,0) =5 [exp(-()\/2a) It-xi|)

|i]=1 uA(xi)

+ exp(-(1/20) ¥ e#x, )]
n (1-6))

- R - X
R Uy () [exp(-(A/2a)t) + exp((A/2a)*t)]} ,

for a ) > 0, The integral equation (4.4) can be transformed to a second-order

s
differential equation whose solution u can be numerically obtained. Then

-* 2

(q+) is the MPLE of the density £f° based on the first penalty function of

Good and Gaskins.
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The nonparametric maximum likelihood estimation of the hazard rate function
r° based on the arbitrarily right-censored sample (xi,A&), i=1,2,...,0n, was
considered by Padgett and Wei [41] in the class of increasing failure rate (IFR)
distributions. The techniques of order restricted inference were used to obtain
the estimator following an argument similar to that of Marshall and Proschan [31]
for the complete sample case., A closed form sclutfion to the likelihood function
of r° subject to the IFR condition was found to be a nondecreasing step function.
Small sample properties of their estimator were indicated by a Monte Carlo study.
Mykytyn and Santner [37] considered the same problem of maximum likelihood esti-
mation of r° under arbitrary right censorship assuming either IFR, decreasing
failure rate (DFR), or U-shaped failure rate. Their estimator vas essentially
equivalent to Padgett and Wei's estimator and was shown to be consistent by using
a total time on test transform. This estimator was maximum ljielihood in the
Kiefer-Wolfowitz sense.

Friedman [17] also considered maximum likelihood estimation from survival
data. Let n survival times be observed over a time period divided into I(n)
intervals and assume that the hazard rate function of the time to failure of
individual j,r,(t), is constant and equal to r

b 13
The maximum likelihood estimate A of the vector A = {log ITE J=1,e..,0;

>0 on the ith interval.

i=1,...,1(n)} gave a simultaneous estimate of the hazard rate function.
Friedman gave conditions for the existence of ; and studied the asymptotic
properties of linear functionals of i in the general case when the true hazard
rate is not a step function. This piecewise smooth estimate of the hazard rate

can be regarded as giving piecewise smooth density estimates.
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5. Some Other Methods

Nonparametric density estimators based on Fourier series representations
have been proposed for censored data. Kimura [23) considered the problem of
estimating density functions and cumulatives by using estimated Fourier series.
A method for generating a useful class of orthonormal families was first
developed for the complete sample case and the results were then generalized
to the case of censored data. Varilance expressions for the quantity
-ff; o(x) d;n(x) were obtained, where ¢ was chosen so that the variance
existed and ;n was the product-limit estimator. Finally, Monte Carlo simula-
tion was used to test the methods developed.

Tarter [53] obtained a new maximum likelihood estimator of the survival
function §° by using Fourler series estimators of the probability densities
of the uncensored observations and censored observations separately. That is,
the density estimates were ; and ?, obtained from the n, observed uncensored
xi's and the n, observed censored Xi's. respectively, where n, + n, = n.

It was shown that as n + ® the new likelihood estimator approached the product-
limit estimator from above. It should be noted that the series-type density
estimators ; and f used here were obtained by the usual complete-sample formulas.

The final series-type estimator to be mentioned here is the general esti-
mator of the density in the k competing risks model of Burke and Horvath [5].
It could be considered as a Fourier-type estimator by appropriate choices of
the form of the defining functionms.

Another method that has beeri used for estimating hazard rate and density

functions is that of Bayesian nonparametric estimation. Since the work of

L
t
Ferguson [12,13], many authors have been concerned with the Bayesian nonparametric i
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estimation of a distribution function or related functions with respect to the

Dirichlet process or other random probability measures as prior distributions.
For censored data Susarla and Van Ryzin [47,48] considered the estimation of the
survival function with respect to Dir‘chlet process priors, while Ferguson and
Phadia [14] used neutral to the right processes as prior distributions.

Padgett and Wei [42] obtained Bayesian nonparametric estimators of the
survival function, density function, and hazard rate function of the lifetime
distribution using pure jump processes as prior distributions on the hazard rate
function, assuming an increasing hazard rate. Both complete and right-censored
samples were considered. The pure jump process prior was appealing because it
had an intuitive physical interpretation as shocks occurring randomly in time
that caused the hazard rate to increase a constant small amount at each shock,
which also closely approximated the (random) increasing failure rate by a
(random) step function. !

Dykstra and Laud [10] also considered a prior distribution on the hazard :

rate function in order to produce smooth nonparametric Bayes estimators. Their

prior was an extended gamma process and the posterior distribution was found
for right-censored data. The Bayes estimators of the survival and hazard rate
functions with respect to a squared error loss were obtained in terms of a one-
dimensional integral.

Lo [28,29] estimated densities and hazard rates, as well as other general

rate functions, from a Bayesian nonparametric approach by constructing a prior

random density as a convolution of a kernel function with the Dirichlet random
probability., His estimator of the density with respect to squared error loss
was essentially a mixture of an initial or prior guess at the density and a
sample probability density function, BHis technique can be used for complete or

censored samples.
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6. Numerical Examples of Some Kernel Density Estimators

Of the many types of nonparametric density estimators available, probably
the most often used in practice are the kernel-type estimators. They are
relatively simple to calculate and can produce smooth, pleasing results. In
this section numerical examples will be given for the kernel estimator (3.4)
and the modified estimator (3.6) with the nearest neighbor-type procedure for
selecting rn.

One problem in using kernel density estimators is that of how to choose
the "best" value of the bandwidth hn to use with a given set of data. This
question has been addressed in the complete sample case by several authors
(see Scott and Factor [46], for example), and "data-based" choices of hn have
been proposed using maximum likelihood, mean squared error, or other criteria,
For the estimator (3.4) no expressions for the mean squared error for finite
sample sizes exist at present, except for those very complicated ones given by
McNichols and Padgett [32]) under the Koziol-Green model. Hence, selection of
h to minimize mean squared error does not seem to be feasible. However, Monte
Carlo simulation results of Padgett and McNichols [40] indicate that at each x
there is a value of hn which minimizes the estimated mean squared error of
;n(x) in (3.4). Similar results were also obtained in [40] for the Blum-
Susarla estimator f:(x) defined by (3.2). These simulation results indicated
a range of values of hn which gave small estimated mean squared errors of
;n(x) and f;(x) at fixed x. The maximum likelihood criterion for selecting
hn for a given censored sample is feasible for ;n but does not seem to be

®
tractable, even using numerical methods, for fn due to the complications intro-

®
duced by the term Bn(x) in the likelihood expression. The maximum likelihood

B YRS SRR = S
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approach will be used in the following example for fn‘
Following a similar approach to expressions (2.8) and (2.9) of Scott and
Factor [46], consider choosing hn to be a value of h 2 0 which maximizes

n 8! 1-8 3

the likelihood

~ i A

L(h) = T [£(z)) 7 1] £ (wau] T (6.1) -

i=1 i o

Obviously, by definition of fn’ the maximum of (6.1) is +« at h=0. Hence, -i

the following modified likelihood criterion is considered:

M

P

n 8! 1-8!

- k - k
paximize L. (h) = N [f_,(z)) ° [f. £_ (u)du) , (6.2)
h=0 1 k=1 nk 'k zk nk
where b -é
~ -1 n zk-z. e
£,.(2)=h jzl 5 K( ——lh ) . ]
j#k 2

For the standard normal kernel K(u) = (2‘!7)-;5 exp(-u2/2), the logarithm of (6.2)

becomes
n
log L, (h) = - ( 1 6) logh
k=1

n n
+ Z Gi logl| Z s

j(z-n)'ls exp(-(zk-zj)2/2h2)]
k=1 3=1

n n
+ 1 (1-81)1ogl ] s, (1-8((z, -2,)/h))], (6.3)
k k] k 3
k=1 =1
¥k
vhere ¢ denotes the standard normal distribution function. An approximate
(local) maximum of (6.3) with respect to h can be easily found by numerical

methods for a given set of censored observations, and this estimated h, denoted

by hn' can be used in (3.4) to calculate fn(x).
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For this example of the density estimation procedure given by (6.3) and
(3.4), the life test data for n=40 mechanical switches reported by Nair [38]
are used. Two failure modes, A and B, were recorded and Nair estimated the
survival function of mode A, assuming the random right-censorship model. Table
1 shows the 40 observations with corresponding 61 values, where 61-1 indi-
cates failure mode A and 61-'0 denotes a censored value (or failure mode B).
Using this data, the function log Ll(h) had a maximum in the interval [0,1)

A

at ;40 ® 0.18. Hence, f40 was computed from (3.4) with bandwidth 0.18,

This estimate is shown in Figure 1. This maximum likelihood approach to select-
ing hn does not produce the smoothest estimate, but is one criterion that can
be used.

Shown also in Figure 1 are the modified kernel estimates calculated from
(3.6) with the "Yn-nearest neighbor" calculation of Pn for the smoothing para-
meter values a = 0,60 and 0.75. The estimate was also calculated for a - 0.55,
but was very close to the fixed bandwidth estimate ;40 with h = 0.18 and,
hence, is not shown. The modified estimator (3.6) with a = 0.75 1is pleasingly

smooth, but with the small sample and only 17 uncensored observations, the

value of a = 0.60 might be a compromise between the very smooth (a = .75) and

somewhat rough (a =.55) estimates.
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TABLE 1. Failure Times (in Millions of Operations) of Switches

] ] ] 4
g Z4 A % H 24 84 2y H
§

. 1.152 0 1.667 1 2.119 0 2.547 1
- 1.170 0 1.695 1 2.135 1 2.548 1
' 1.248 0" 1.710 1 2.197 1 2.738 0
- 1.33 0 1.955 0 2.199 0 2,794 1
: 1.381 0 1.965 1 2.227 1 2.883 0
1.499 1 2.012 0 2,250 0 2.883 0
1.508 0 2.051 0 2.254 1 2.910 1
1.543 0 2.076 0 2.261 0 3.015 1
1.577 0 2.109 1 2,349 0 3.017 1
1.584 0 2.116 0 2.369 1 3.793 0

(Fig. 1 here)
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tha=0.75
ith a = 0,60

n

- — fn w
se==-* f, with h = 0,18
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